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COUCHE LIMITE AVEC REACTION DE SURFACE: 
EXTENSION DE LA METHODE DE ROSNER AU CAS 

COMPRESSIBLE A GRADIENT THERMIQUE. 
APPLICATION AU JET PAR~ETAL 

A. GARO et M. LEDOUX 
Laboratoire de Thermodynamique, L.A.C.N.R.S. No. 230, Faculti des Sciences des Techniques de Rouen, 

B.P. 67, 76130 Mont-Saint-Aignan, France 

(ReCu le 20 janvier 1980 et sous fornze revisde ie 10 juin 1981) 

R&m&-Rower a proposC une mkthode quasi-stationnaire pour le calcui des con~ntrations parietales d’un 
effluent diffusant dans la couche limite dkveloppke au-dews d’une plaque plane, dans des conditions 
dkoulement isotherme incompressible. Cette mkthode est itendue ici $ un kcoulement compressible $ 
gradient de tempkature pour un ~coulement potentiel uniforme. Des solutions sont dgalement donnCs pour 
un jet par&al non-isotherme. Cans ce demier cas, une nouvelle equation intkgrale est don& sous une forme 
adimensionnelle et rkolue. Dans tous les cas des courbes adimensionnelles sont donnkes pour divers ordres 

de rkaction. 

NOMENCLATURE Indices 

fraction massique de l’effluent ; 
distance du bord d’attaque de la plaque 
au jet; 
coefficient de diffusion de l’effluent dans le 
guide vecteur ; 
fonction de courant adimensionnelle; 
fonction d’Eckert (kquation 15); 
densit de flux massique pariCtale de 
Veffluent ; 
coefficient de cinttique pariCtale; 
parametre (equation 45); 
diamktre du brcleur et de la flamme plate: 
diam&e de l’orifice g&rateur du jet ; 
fraction massique rCduite, m = C/C,; 
fonction auxiliaire (17a); 
ordre de la r&action pari6tale; 
nombre de Reynolds, R, = U,x/v; 
nombre de Schmidt, SC = v/D; 
nombre de Stanton ; 
composants de la vitesse, res~tivement 
paraWe et perpendiculaire & la plaque; 
coordonnies, respectivement distance au 
bord d’attaque et normale i la paroi; 
distance de l’orifice d l’injection dans le 
cas du jet pariCta1; 
variables synthitiques adimensionnelles 
dCfinies respectivement par (12b), (37) et 
(57b). 

e, 
iso, 

W, 

LES PROBLEMES posds par l’introduction d’une paroi 
catalytique dans un icoulement reactif inttressent 
diffkrents domaines de la technique depuis de nom- 
breuses annbes. Citons par exemple le gCnie chimique, 
la biologie (transferts liquides-gaz au voisinage d’une 
membrane). Les phCnom&es de rentrie atmosphCr- 
ique ont 6tP: longtemps d la base d’un grand nombre de 
publications. Enfin, plus r~cemment, les sp&ialistes de 
l’environnement ont mis l’accent sur l’importance de 
I’interaction entre les couches limites atmosphlriques 
de diffusion de polluants (SO,, fluor) et la vig&ation. 

I1 est remarquable que, pour des situations aussi 
diverses, les equations fondam~tales de bilan d6cri- 
vant les phtnomCnes sont formellement identiques. 
Dans la pratique, Ies &coulements turbulents sont la 
regle. Toutefois, et en particulier pour les &zoulements 
A haute temp&ature ou faible densite, les Ctudes en 
regime laminaire restent d’un grand int&&t. 

Un des r&ultats les plus importants que l’on cherche 
$ retirer d’une ttude de l’interaction entre paroi et 
fluide rkactifs est la r&partition par&&ale de concentra- 
tions des esptces rkagissantes. 

Symboles grecs 

49 variables de Lees-Dorodnitsyn 
(equation 22); 

6, &*, 8**, lpaisseurs de diffusion ; 
5, variable de Lees-Dorodnitsyn 

(lquation 22); 
viscosit6 dynamique du fluide vecteur ; 
viscositt! cinkmatique du fluide vecteur ; 
masse volumique du fluide vecteur. 

dans 1’6coulement potentiel; 
relatif aux problBmes de transferts g force 
(C, - C,) constante; 
g la paroi. 

1. INTRODUCTION 

A partir du moment oii la cin&ique pariCtale est 
connue, la donnle des concentrations de paroi est 
Cquivalente i celle des flux. A l’inverse, il est possible, 
& travers ces calculs et des mesures de concentrations 
parittales, de remonter ri une mesure des cin6tiques : les 
rksultats de l’Ctude thtorique prisentte ici ont it6 
utilists pour la dltermination de la recombinaison du 
radical OH sur une paroi de quartz placQ dans une 
flamme CH,-OZ sous 25 torrs. 
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De nombreux auteurs ont presentt des methodes de 
resolution des equations de la couche limite reactive. 

Actuellement,cesmethodesconduisent lepluspouvent 
a des resolutions numeriques. Dans ce cas, le calcul 
doit etre rep&C a chaque nouvelle situation experimen- 
tale. Nous pensons, a cet egard, que les methodes 
analytiques, plus limitees dans leur application, gar- 
dent encore le merite dune certaine generalite. I1 est 

done utile de les developper autant que possible. 
De nombreuses theories du transfert parietal utili- 

sent les r&hats du transfert a “force constante”. (Ce 
terme est utilise comme traduction de I’expression 
utilisee par Rosner [l] “driving force”, qui revient a C, 
et C, constants). 

Parmi ces auteurs, Frank Kamenetskii [2] conserve 
dans le cas dune concentration parietale variable 
C,(x) l’expression du coefficient de convection. C’est 

une approximation d’autant plus valable qu’on 
s’iloigne du bord d’attaque (ou C, tend asymptotique- 
ment vers une valeur constante) mais qui peut se reveler 
particulierement fausse aux faibles abscisses. Chambre 

et Acrivos [3] ont propose une methode de superposi- 
tion qui conduit, dans le cas de la plaque plane, a une 
operation inttgrale de Voherra du second ordre. 
Differentes methodes de solution ont Cti donnees 
pour cette equation, notamment par Chung [4], 
Lassau [5] et fun des auteurs de cet article [6]. 

L’analogie, moyennant certaines conditions restric- 
tives, des transferts de chaleur et de masse a ete aussi 
utilisee pour resoudre ce type de probltme [S-8]. 
Toutes ces methodes sont basees sur un m&me schema : 
(a) calculer le flux parietal pour une repartition donnee 
de la concentration parietale C,(x); (b) exprimer que 
ce flux parietal est le fruit dune reaction localisee a la 
paroi : cette donnee est la plupart du temps exprimee 
sous la forme dune equation de cinetique chimique. 

Rosner a utilise une methode de ce type dans le cas 
dune plaque plane plongee dans un ecoulement 
potentiel uniforme et isotherme. C’est cette methode 
que Ton a etendu ici au cas dun Ccoulement compres- 

sible non isotherme. Les problemes poses par un 
Ccoulement potentiel uniforme et un jet parietal seront 
envisages successivement. 

Nous allons auparavant rappeler les grandes lignes 
de la methode telle que I’a presentee Rosner, quoique 
sous une forme un peu differente. 

Dans tout ce qui suit, les bilans sont Ccrits pour un 
seul reactif en faible concentration dans l’ecoulement 

potentiel. Ceci n’imphque pas l’absence d’autres ef- 
fluents, mais simplement que les reactions eventuelles 
de I’espece consideree ici avec les autres composants du 
fluide vecteur n’ont pas d’influence notable sur les 
bilans. 

2. LA METHODE QUASISTATIONNAIRE DE ROSNER 

Le systeme d’iquations dtcrivant les transferts dans 
la couche limite developpee au-dessus dune plaque 
plane s’ecrit : 
Continuitt : 

Impulsion : 

!?+T?=(); 
ay (1) 

au au azu 
u--+I_-_=v-. 

ax ay ay2 ’ 

Continuite de I’espece : 

udc+vC=Da2c 
ax ay ay2’ 

(2) 

(3) 

Ce systeme s’assortit des conditions aux limites : 

dU 
y+yJ, u=lJ,, g=o; (44 

c = c,, !&_ 

dx - 
0; (4b) 

y=o, u=v=o; 

J,=,D’ic 
FY w 

= -k(pC,)“. 

(4c) 

(4d) 

Ces equations sont &rites pour un fluide a propri- 

ites physiques constantes en l’absence de gradients de 
pression longitudinaux. Equation (4d) exprime la 
disparition de l’effluent a la paroi par l’intermidiaire 
dune reaction chimique d’ordre n (le probltme de la 
creation parietale de cet effluent est symitrique du 
present probleme et est susceptible du m&me 
traitement). 

C,(x) est la fonction inconnue que nous cherchons 
ici. L’integration de (3) sur y entre 0 et I’infini donne: 

da** 
dx + 6* &hr [U,(C, - C,)] = St(x) (5) 

et 

St(x) = 
J,(x) 

PeUe(Ce - Cw) 
est un nombre de Stanton. 

La mithode de Rosner comporte trois itapes. 
(1) La theorie du transfert a force (C, - C,) 

constante est utilisee pour exprimer la relation entre le 
nombre de Stanton Sri,,(x) et 62,*(x). Dans tout ce qui 
suit, l’indice iso designe des quantitis et des resultats 
relatifs au probleme a force (C, - C,) constante. 

Dans ce cas, Sti,,(x) est don& par : 

Stih,,(x) = 01R;"2S; I @a) 

Oii 

0 = 0 332 S”3. I 3 c @b) 

C’est I’analogue du resultat de Polhausen [9]. 

D’aprb (8) la relation entre Stiso et i5:,* est donnee 
par : 

Stiso(x) = 

20; x 

S=R &+*’ 
c x IS0 

(9) 
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(2) Quand (C, - C,) varie avec x, a** et St sont bien 
entendu differents de a:,* et Stiso. Neanmoins, on 
suppose que la relation (9) restevalable. Cette approxi- 
mation ~u~s~-stat~onn~~re est bien plus logique que celle 
de Frank-Kamenetskii en ce sens que I’on relie ici des 
valeurs integrales (dependant de tout le comportement 
de la couche limite) et non des valeurs locales. 

Le nombre de Stanton est tire de (5) et (9) 

St(x) = 2 J f V&C, - C,) 
x 

1 
X 

1 
. (10) 

Uf (C, - C,)' dx 

(3) En exprimant que le ffux massique parietal J,(x) 
est le resultat dune reaction d’ordre n, l’equation 
integrale suivante est trouvee 

rn: = (1 -m,)2 [S i(l -m,J2 -d< 
1 

- 1 I2 

. (11) 
0 

Cette equation a ite mise sous forme adimensionnelle 
grace a l’usage des variables : 

et 

Elle s’assortit de la condition aux limites 

f=O; M, = 1. (13) 

Les equations (11) et (13) permettent le calcul des 
concentrations pariitales pour tous les ordres de 
reactions et conditions aerothermiques. En effet elles 
utilisent la variable synthitique z 
l’information sur la dynamique et 
chimique. 

Des solutions analytiques de (11) 
donnees pour differentes valeurs de n : 

pour n = 0 (flux constant) 

z = 2(1 -m,)2; 

pourn=l 

qui contient 
la cinetique 

peuvent &tre 

1 - m2 
Z=lnm~+---“. 

rn: ’ 

pour n = i 

f= -3(1-m,) + 
l-m 1 
~+In---; 

m, mt 

pour une valeur queiconque de n 

Wa) 

(14b) 

(14c) 

(14d) 

Quelques courbes representatives de m,,,(z) sont 
donntes sur la Fig. 1. 

Cette mdthode a deja ete &endue par I’un des 
auteurs de cet article au cas dun echelon de catalyse 
[lo]. Eckert [ll] a montre (pour un echelon de 
temperature parietale x0. C, resultat est ici 
transpose au cas de la diffusion de matiere) que le 
nombre de Stanton peut se mettre sous la forme: 

St,,,(x) = 0, R; “= S;' g . (15) 

~app~ication de la methode en 3 &apes 
precedemment d&rite conduit P [lo] : 

M” = 
(1 - mw)2 M(i, 5,) 

w 112’ (16) 

La fonction auxiliaire M(z, zo) est donnee par 

‘T lgr+)$ (17a) c-i M(f, fo) = ~ 

Od 

5, = 5(x0). U7b) 
Cette equation (16) peut etre resolue 

numeriquement. 
Cette methode de resolution est A ce niveau limith 

dans son application par l’hypothese trb restrictive 
dun Ccoulement a proprittts physiques constantes. 
Dans un premier temps, nous allons done devoir 
etendre cette mtthode au cas dun ~coulement 
compressible non isotherme au-dessus dune plaque 
plane. 

3. ECOULEMENT POTENTIEL UNIFORME FLUIDE 
COMPRESSIBLE NON ISOTHERME 

Nous allons ici calculer les concentrations paridtales 
dun e~uent transporti par un ~oulement potentiel 

MW L-- 
.‘__. .:_-._~___ / : . 

a6 

a6 

a4 

0.2 

I . I # I . 

0 2 4 6 a 10 2,r 

FIG. 1. Solution des equations (11) et (38). 



paralltle uniforme au-dews dune plaque catalytique 
moyennant les hypotheses suivantes : 

-La vitesse d’ecoulement potentiel est constante 
(pas de gradient de pression). 

-La temperature peut varier dans la couche limite, 
mais est constante dans I’ecoulement potentiel. Ainsi, 
p, et ill, sont des constantes. 

-Le rapport p~~p~~ reste constant et igal a 1 dans 
la couche limite. Cette hypothese est valable dans de 
nombreux cas pratiques. 

-Les reactions chimiques ne sont pas 
stu~samment exo (ou endo)-thermiques pour affecter 
les profils de temperature. Le probleme thermique est 
d’ailleurs suppose resolu ici : on se donne 7(x, y), done 

P(-T Y) et Ax, y). 
Le transfert thermique determine les proprittis du 

ftuide, mais il n’y a pas de contre-reaction de la part de 
la chimie SW les profils. Cette solution du probltme 
thermique peut provenir dune resolution anterieure 
ou de mesures experimentales. 

Les equations (1) a (3) deviennent : 

(18) 

avec les conditions aux limites 

du, y + x U = u, -dx = 0, (2La) 

Equation (27) est formellement identique ri (5). Les 
effets de la temperature sont introduits par l’interme- 
diaire de la definition de 6* ; St(x) est toujours dtfini 

par (7). 
S& peut &tre exprime sous la forme: 

c = c, 
dC 
-g = 0, (2fb) 

y=o u=L’=o, WC) 

ac 
J,(x) = PD &y w = k(pC,)“. WI 

Introduisons une transformation de Lees- 
lorodnitsyn, comme le font Fox et Steiger [15] : 

Od 

t = (224 m - %iso 
~‘iso = 1 - mwiso s 

(‘W Les hypotheses et la definition de 5 et q conduisent 
a: 

r = P&e LJ,x. (32a) 

D 

ainsi que la fonction de courant reduite,f : 

aiir a+ 
pl-$ pv= -ax; (2W 

f23bf On trouve alors : 

Od 

En Sabsence de gradient de pression, une hypothese 
de similarite locale peut &tre faite. Le systeme 
(18)-(20) devient alors: 

a”f +&o, 
8~2 a92 (24) 

356 A. GARO et M. LEDOUX 

(25) 

assorti des conditions aux limites 

df+l 
Vl’XY all ’ 

m-r 1; 

q = 0 f c?rl=o, f=O; 

(264 

(26b) 

(2k) 

m est une concentration reduite dtfinie comme C/C,. 
Si nous remplagons la condition (26d) par : 

q = 0, m = mwiso = 0,. VW 

la solution du systeme est bien connue. Elle a Cte 
don&e par Polhausen. Ces solutions seront designees 

par X&) et mi,(ll). 

L’integration de (20) SW y entre 0 et l’infini donne: 

g + 6* & In [p, U,(C, - C,)] = St(x) (27) 

avec 

Oli 

c - cw 
‘i = c, - c,‘ (29) 

(31) 

fdy I(= 

Pe 
(32b) 

S& = 20, 
J 

$-JX. Wa) 
e 

(33b) 
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O,, conformtment a la theorie de Polhausen, est 
identique a 0 ~/SC. La relation entre S&, et Stir0 est alors 
trot&e quand (C, - C,) est constant. Dans ce cas, en 
effet : 

dGo ~ = Sfi,,(X) 
dx 

ce qui donne 

(35) 

Quand (C, - C,) varie, l’approximation de quasi- 
stationnarite conduit a conserver (3.5). St(x) est alors 
donne par: 

St(x) = 
k(p,Cw) 

P,~,(C, - L) 

2 .O,xU,(C, - C,) 
I= -- (36) 

S& = [p,U,(C, - C,)]‘ds Ii2 
0 

Equation (36) ne differe de (IO) que par I’introduction 
de p,. Dans de nombreux cas, il est possible de nigliger 
&art de p,(x) par rapport a une valeur moyenne p,. 
C’est dans ce cas que nous nous placerons ici. 

On peut alors difinir une variable i par: 

L’iquation donnant m,,,(q est alors: 

Cette equation est identique a (11). Ainsi les sohr- 
tions donnees par (14) et representees Fig. (1) peuvent 
&tre transposies a m,(?), moyennant l’hypothtse 
pw = p,. De la m&me man&e, le probleme de l’tche- 
lon de catalyse pourra &tre resolu a l’aide de (16). 

4 APPLICATION A UN JET PARIETAL 

L’analyse que suit a ttt developpee afin de resoudre 
un probleme rencontre durant l’etude de ~interaction 
dune flamme plate propane-oxygene sous 25 torrs et 
dune plaque de quartz plane parallele a l’ecoulement 
des gaz de combustion. Ceci justifie la geomttrie 
adaptee ici. Toutefois les resultats de notre etude sont 
geniralisables a toutes sortes de jets parietaux. 

La Fig. 2 montre la geometric du systtme. Le bruleur 
et la flamme plate peuvent Ctre consider& comme un 
orifice delivrant un jet de gaz chauds laminaires. Son 
diametre est L. La plaque plane est placie a une 
distance d du bruleur (d est de l’ordre de L/10). La 
distance dun point de la plaque au bord d’attaque est 
designee par x. Ainsi, la distance au britleur de ce point 
est (x+d). 

4.1. DPjnition de l’koulement potentiel 
Divers auteurs ont ttudii le jet pa&al dans le cas 

dun orifice generateur tres mince au proche voisinage 
de la paroi. Glauert [13] a rbolu le probltme dyna- 
mique pour des propriites du fluide constantes. Riley 
[17] a etendu ce calcul au cas compressible pour 
l’utilisation dune transformation de Lees. Le transfert 
de chaleur a ite Ctudie par Bloom et Steiger [16] et 
Bansal et Tak [ 18). La theorie de Glauert a Cte verifiee 
exp~~mentaIement par Bakke [19]. 

La geometric du present icoulement est plus gener- 
ale que celle traitee par ces differents autedrs, mais 
nous allons utiliser certains de leurs resultats. 

La region etudiee ici ne depasse pas une longueur 
Cgale a 3 ou 4 D. Un profil de vitesse typique tel que 
reprtsente sur la Fig. 2 peut alors &tre adopt& Trois 
zones peuvent &tre distinguees dans ce profil : 

-une zone de melange (c) sur le bord du jet; 
-une zone (b) od la vitesse est pratiquement 

constante ; 
-une couche limite au voisinage de la plaque (a). 
L~ypoth~se fondamentale qui sera faite ici est que la 

settle interaction entre les zones (e) et (a) est constituee 
par la valeur de la vitesse dans la region (b), appelie 

U,(x). 
Pour determiner V,(x), nous allons &ire la conser- 

vation de l’impulsion dans le jet. La majeure partie du 
flux de quantite de mouvement est contenue dans un 
tronc de cone dont le diametre, en raison du develop- 
pement lineaire de la zone de melange, est proportion- 
nel a X. Ce que I’on peut ecrire: 

$h.S[j:) = 0 

Od 

K est ici une constante. 
L’integration de (38) conduit a : 

U,(2) = -s?..- 
1 + a.f 

2K 
a = -. 

L 

(39) 

WW 

Wb) 

Si d n’est pas trop different (ou inferieur) a L/10, 
(40a) peut etre transformi en : 

(41) 

pour x different de zero. 
Nous utiliserons cette approximation plus loin. Elle 

a Cte vM%e experimentalement dans un cas partic- 
uher [12]. 

Le problbme du transfert dune esp&e contenue en 
concentration constante C, dans la zone (b) va Ctre 
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._.- 
UC! 

-._.- 

PLAQUE 

FIG. 2. Schima du jet par&al. 

considere maintenant. Nous ferons les hypotheses 
suivantes : 

-T, est constant dans la zone(b). p, et ge sent done 
constants. 

-Le probleme thermique, comme au $3 est consid- 
ere comme resolu. T(x, y), p(x, y) sont connus dans 
la zone (a). 

- Le nombre de Schmidt SC est constant. 11 est Cgal a 

v.lDe. 
---p&py, est constant et egal d 1. 

4.2. Calcul des pro~‘X~ de uiiesse 
Les equations decrivant les transports dans la 

couche limite sont toujours donnees par (18), (19) et 
(20). Les conditions aux limites sont donnees par: 

y-+ x3, u = U,(x) 

oti U,(x) est calculi d’apres (41) 

(424 

dC 
y+cI, c=c,, $=O; (42b) 

Y = 0, uzc=o; (42~) 

Dans un premier temps, nous devons calculer les 
profils de vitesse. A l’aide des variables definies par (22) 
et (23), le systtme (18) et (19) peut &tre transforme en : 

avec les conditions aux limites 

(43a) 

af+,. vl-+xc, T& Wb) 

Si V,(x) suit (41), - 5 dU,/U, de prend la valeur 2. 
Alors une solution semblable peut Ctre trouvke pourf; 

qui devient fonction unique de n. Equation (43) 
devient : 

2 
d3f+f!3+2 ar _-0, 

0 a+ a+ a? WI 

Glauert [ 131 a donne une solution de (44) sous une 
forme parametrique : 

f” = p2 VW 

n = In 
(1 + p + P2)l 2 
7-7-]+ J3tan-‘[ej 

(45b) 

qui conduit a: 

afo 2 
- = 3p(l -p3). 
ar 

(45c) 

Glauert remarque igalement que si A est une 
constante, toutes les solutions de la forme Af” (Aq) 
sont solutions de (43);f’ est represent6 sur la Fig. 3. 

Du point de vue satisfaction des conditions aux 
limites,f’ satisfait au probleme defmi par: 

La fonction f” entiere ne peut constituer une 
solution a notre probleme. Une bonne approximation 
au profil de vitesses sera donnee par : 

Pour la zone (b): ~~/~~(~) = 1; 
Pour la zone (a) : la part ascendante de la fonction 

f(r) = Af’(Aq) telle que af/aq = 1 a son maximum. 
L’aspect asymptotique du raccordement de la 

couche limite a la frontiere est supprimd. Toutefois 
cette solution a donne un bon accord avec les dontrees 
expkimentales [14]. 

La similarite locale ayant Cte etablie, nous pouvons 
mettre I’tquation (20) sous la forme: 

(464 

ou y est definie par (29). f a CtC dtterminee au 3 4.2. 
Les conditions aux limites peuvent s’icrire : 

q -t %cI, y+ 1; Wb) 

y = 0. 1 = 4 (4k) 

La resolution de (46a) est alors formellement 
identique a celle du probitme de Polhausen avec une 
fonction f(v) differen te. 

Le gradient par&al de y sera donne par: 
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Le nombre de Stanton pour une concentration 
par&ale Cwi,, constante, Stiso, pourra s’kcrire : 

PA E 
Sfiso(x) = 

ay w 

PJ,(C, - C,) 

= &(~~“x-‘-~$~,. (48) 

Dans (48), l’invariabilitk de SC et pp conduit B 
1’Cgaliti de D, et de (p,/p,)’ D,. 

St,,(x) peut &tre rt%crit sous la forme: 

l/Z 

St. 
IS0 

x-1/4 (49) 

Lecalculde(dy/d~)l, a Itl fait A partir de (47). Nous 
avons trouvk A partir du rksultat de ce calcul que e3 est 
donnt avec une trts bonne approximation par : 

0, = 0,335 SC -0.56. (50) 

4.8. Application de la mtthode quasi-stationnaire 
Equation (20) Ctant encore valable, une tpaisseur 

6(x) peut &tre dkfinie de la m&me man&e que 6*(x) 
dans (28) et la relation entre 6(x) et St(x) sera donrke 
par : 

$ + 6 Y& In [p,U,(C, - C,)] = St(x). (51) 

qui est identique B (27). 

4.3.1. Quand (C, - C,) est constant, mais que U,(x) 
varie, la relation entre Stiso et SisO se dtduira de 

En tenant compte de (41) et (49), hiso prend la forme : 

ai,, = 40, $- ( ! 
112 

x3/4 

0 

PRESENT STUN 

(53) 

0 a5 1 1.5 2 7 

FIG. 3. Pro% de vitesse dans la couche limite du jet pa&al. 

Done 

41’3 .@4’3 213 

Sfiso(X) = 
3 

” 
e 

#I3 . u ’ 
( > 

(54) 

ISO 0 

4.3.2. La relation (54) est conseke, suivant 
l’approximation quasi-stationnaire. En combinant 
(54) et (51), l’inttgration, moyennant la condition x 
= 0, 6 = 0, nous donne: 

Exprimons maintenant le fait que le nombre de 
Stanton, relii: B 6(x) par (54), est kgalement le risultat 
d’une rlaction pariitale d’ordre n : 

St(x) = 
k&v) 

P,U,(C, -C,) 

3114 ‘0, 2% ( ! 
l/Z 

UO 
{PeUe(Ce-Cw)}1’3 

= 

{I‘ 
x [p,U,(C, - C,)]4’3 ds 

1 

1’4 ’ 

(56) 

JO 

Equation (56) peut itre transformke en une tquation 
intkgrale adimensionnelle par l’intermkdiaire des 
variables m et z 

(574 m=W 
CC 

k(p$V~~; ( n v l/Z 419 

c 

> } 
x219, (57b) 

Cette forme de z peut &re comparek ii (12b) et (37). 
Equation (56) devient alors : 

,=e. (58) 

0.6 

0 2 4 6 8 Z 

FIG. 4. Solutions de I’kquation (58). 
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Cette Cquation a dtt: rkolue numtriquement pour les 
ordres 0, $, 1, 2, 3 et 4. Les rlsultats sont donnCs dans 
le Tableau 1. 

Remarquons que pour II = 0 (flux constant), une 
solution analytique est facilement trouvke sous la 
forme : 

Equation (59) conduit ai une variation de 1 -m, 
proportionnelle zi ,/x. 

5. CONCLUSION 

La mCthode de Rosner, telie qu’elle a Cti dkveloppke 
par son auteur, permet le calcul des fractions 
massiques parittales d’un effluent diffusant dans la 
couche limite dkveloppke par un fluide vecteur de 
propriitts physiques constantes. L’kcoulement 
potentiel n’a alors pas de gradient de pression. 

Par l’introduction des variables < et q, nous avons 
prolongi cette mkthode au cas compressible non- 
isotherme. Dans le cas d’un koulement potentiel $ 
gradient longitudinal de vitesse (jet pariktal), nous 
avons montrt que cette mkthode est encore applicable. 

La formulation adimensionnelle du probkme est un 
atout important de cette mkthode, car elle donne des 
solutions universelles, valables pour toutes les 
cindtiques, vitesses, champs de temptrature et nature 
des fluides. 

Les r&uItats de cette etude ont en particulier permis 
de rlpondre A des questions pokes lors de l’ktude de 
l’interaction entre une flamme propane-oxygtie sous 
25 torrs et une plaque de quartz. 

On peut aistment se rendre compte que la mtthode 
propoke ici n’est pas limit&e aux fkoulements 
potentiels isothermes suivant uniquement des lois de 
vitesse telle que (41). En fait, ;i partir du moment oti U,, 
p,, p, peuvent &tre exprimkes en fonction d’une 
puissance de x, une Cquation intkgrale du mCme type 
que (58) peut &tre trouvle, moyennant une dtfinition 

convenable de z. 11 semble toutefois que la similaritl 
locale soit nkcessaire. 

Par ailleurs, la solution de certains probiBmes 
catalytiques peut Ctre transposke au transfert de 
chaleur. En particulier, le cas du chauffage ii flux 
constant n = 0: dans ce dernier cas, les solutions 
trouvkes sont immkdiatement applicables. 

Enfin, des indications sont don&es sur i’application 
du calcul prisentt ici au cas d’un ichelon catalytique. 
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BOUNDARY LAYER WITH SURFACE REACTION: EXTENSION OF THE ROSNER’S 
METHOD TO THE COMF’RESSKBLE NON~S~~HERMAL CASE. APPLICATION TO THE 

WALL JET 

Abstract-Rosner derived a ~~si~stati0na~ method for caalcutation of wail mass fraction of an effluent 
diffusing in the boundary layer developed above a Bat plane under isothermal ~nc0mpress~bie conditions. 
This method has heen extended here to the non-isothermal compressible ease with uniform potential Bow. 
Solutions are also given in the case of a non-isothermal wall jet. In this latter case a new integral equation is 
derived under non-dimensional form and solved. In these three cases, non-dimensional curves are given for 

several orders of reaction. 

GRENZSCHICHT MIT OBERFL.%HENREAKTION: AUSDEHNUNG DES ROSNER- 
VERFAHRENS AUF DEN KOMPRESSIBLEN NICHTISOTHERMEN FALL. ANWENDUNG 

AUF EINEN WANDSTRAHL 

Zussm~~a~ung-Rosnerentwickelteeinequasistatio~lreMethodezur ~~~chnungdes Wandm~s~nan- 
teifs eines ausstr~menden Mediums, das in die Grenzschicht ii&r einer ebenen F&he unter isothermen 
jnkompress~~len ~dingungen dj~undier~ Hier wird d&e Methode a&den n~cht~sothermen kompressiblen 
Fail hei gieichfijrmiger Potentialstr~mung erweitert. Fiir einen n~cht~~otherm~ Wands&&l werden 
Lijsungen angegehen. Fiir diesen letzteren Fall wird eine neue Integra~gleic~~0g in di~nsions~0~r Form 
entwickelt und gel&t. In diesen drei Fnllen werden fiir mehrere Grade der Reaktion dimensionslose Kurven 

angegehen. 


