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Résumé—Rosner a proposé une méthode quasi-stationnaire pour le calcu! des concentrations pariétales d'un

effluent diffusant dans la couche limite développée au-dessus d'une plaque plane, dans des conditions

découlement isotherme incompressible. Cette méthode est étendue ici 4 un écoulement compressible a

gradient de température pour un écoulement potentiel uniforme. Des solutions sont également données pour

un jet pariétal non-isotherme. Cans ce dernier cas, une nouvelle équation intégrale est donnée sous une forme

adimensionnelle et résolue. Dans tous les cas des courbes adimensionnelles sont données pour divers ordres
de réaction.

NOMENCLATURE

C, fraction massique de P'effiuent;

d, distance du bord d’attaque de la plaque
au jet;

D, coefficient de diffusion de I'effluent dansle
fluide vecteur;

f fonction de courant adimensionnelle ;

g fonction d’Eckert (€quation 15);

J s densité de flux massique pariétale de
I'effluent ;

k, coefficient de cinétique pariétale;

I paramétre (équation 45);

L, diamétre du briileur et de la flamme plate:
diamétre de Porifice générateur du jet;

m, fraction massique réduite, m = C/C,;

M, fonction auxiliaire {17a);

n, ordre de la réaction pariétale;

R, nombre de Reynolds, R, = U x/v;

Se, nombre de Schmidt, Sc = v/D;

St, nombre de Stanton;

u, v, composants de la vitesse, respectivement
paralléie et perpendiculaire a la plaque;

X, ¥, coordonnées, respectivement distance au
bord d’attaque et normale & la paroi;

X, distance de l'orifice a4 I'injection dans le
cas du jet pariétal;

Z,Z,z, variables synthétiques adimensionnelles

définies respectivement par (12b), (37) et
(57b).

Symboles grecs
1, variables de Lees—Dorodnitsyn
(équation 22);
3,8*, 0**, épaisseurs de diffusion;

¢, variable de Lees—Dorodnitsyn
{équation 22);

i, viscosité dynamique du fluide vecteur;

v, viscosité cinématique du fluide vecteur;

o, masse volumique du fluide vecteur.

353

Indices
e, dans Y'écoulement potentiel;
150, relatif aux problémes de transferts a force
(C, — C,,) constante;
w, 4 la paroi.

1. INTRODUCTION

LEs PROBLEMES posés par Pintroduction d'une paroi
catalytique dans un écoulement réactif intéressent
différents domaines de la technique depuis de nom-
breuses années. Citons par exemple le génie chimique,
la biologie {transferts liquides—gaz au voisinage d’une
membrane). Les phénoménes de rentrée atmosphér-
ique ont ét¢ longtemps 4 la base d’un grand nombre de
publications, Enfin, plus récemment, les spécialistes de
Penvironnement ont mis P'accent sur Pimportance de
Pinteraction entre les couches limites atmosphériques
de diffusion de polluants (SO,, fluor) et la végétation.

Il est remarquable que, pour des situations aussi
diverses, les équations fondamentales de bilan décri-
vant les phénomeénes sont formellement identiques.
Dans la pratique, les écoulements turbulents sont la
régle. Toutefois, et en particulier pour les écoulements
a haute température ou faible densité, les études en
régime laminaire restent d’'un grand intérét.

Un des résultats les plus importants que P'on cherche
4 retirer d’une étude de linteraction entre paroi et
fluide réactifs est la répartition pariétale de concentra-
tions des espéces réagissantes.

A partir du moment ou la cinétique pariétale est
connue, la donnée des concentrations de paroi est
équivalente a celle des flux. A Pinverse, il est possible,
4 travers ces calculs et des mesures de concentrations
pariétales, de remonter 4 une mesure des cinétiques: les
résultats de I'étude théorique présentée ici ont été
utilisés pour la détermination de la recombinaison du
radical OH sur une paroi de quartz placée dans une
flamme CH,-O, sous 25 torrs.



354 A. Garo et M. LEpoux

De nombreux auteurs ont présenté des méthodes de
résolution des équations de la couche limite réactive.
Actuellement, ces méthodes conduisent le plus pouvent
4 des résolutions numériques. Dans ce cas, le calcul
doit étre répété a chaque nouvelle situation expérimen-
tale. Nous pensons, d cet égard, que les méthodes
analytiques, plus limitées dans leur application, gar-
dent encore le mérite d'une certaine généralité. Il est
donc utile de les développer autant que possible.

De nombreuses théories du transfert pariétal utili-
sent les résultats du transfert a4 “force constante”. (Ce
terme est utilis¢ comme traduction de I'expression
utilisée par Rosner [1] “driving force”, qui revient a C,
et C,, constants).

Parmi ces auteurs, Frank Kamenetskii [2] conserve
dans le cas d’une concentration pariétale variable
C,(x) expression du coefficient de convection. C’est
une approximation d’autant plus valable qu’on
s’¢loigne du bord d’attaque (ou C,, tend asymptotique-
ment vers une valeur constante) mais qui peut se revéler
particuliérement fausse aux faibles abscisses. Chambre
et Acrivos [3] ont proposé une méthode de superposi-
tion qui conduit, dans le cas de la plaque plane, a une
opération intégrale de Volterra du second ordre.
Différentes méthodes de solution ont été données
pour cette équation, notamment par Chung [4],
Lassau [5] et I'un des auteurs de cet article [6].
L’analogie, moyennant certaines conditions restric-
tives, des transferts de chaleur et de masse a ét¢ aussi
utilisée pour résoudre ce type de probléme [5-8].
Toutes ces méthodes sont basées sur un méme schéma:
(a)calculer le flux pariétal pour une répartition donnée
de la concentration pariétale C,(x); (b) exprimer que
ce flux pariétal est le fruit d’une réaction localisée a la
paroi: cette donnée est la plupart du temps exprimée
sous la forme d’une équation de cinétique chimique.

Rosner a utilisé une méthode de ce type dans le cas
d'une plaque plane plongée dans un écoulement
potentiel uniforme et isotherme. Cest cette méthode
que 'on a étendu ici au cas d’un écoulement compres-
sible non isotherme. Les problémes posés par un
écoulement potentiel uniforme et un jet pariétal seront
envisagés successivement.

Nous allons auparavant rappeler les grandes lignes
de la méthode telle que I'a présentée Rosner, quoique
sous une forme un peu différente.

Dans tout ce qui suit, les bilans sont écrits pour un
seul réactif en faible concentration dans I’écoulement
potentiel. Ceci n'implique pas I'absence d’autres ef-
fluents, mais simplement que les réactions éventuelles
de l'espéce considérée ici avec les autres composants du
fluide vecteur n’ont pas d’influence notable sur les
bilans.

2. LA METHODE QUASI-STATIONNAIRE DE ROSNER

Le systéme d’équations décrivant les transferts dans
la couche limite développée au-dessus d’une plaque
plane sécrit:

Continuité :

ML, (1)
ox  dy
Impulsion:
Ju v u

—tv—=v_—; 2
“ox Uay v('iy2 @

Continuité de I'espéce:
oC aoc *C
u—+v—=D_—. 3)
0x dy Oy

Ce systéme s’assortit des conditions aux limites:

dU
y— %, u=U, £ =0; (4a)
dx
dc,
c=¢, —=0; (4b)
dx
y=0, u=v=0; (4¢)
0C
J=pD" | = —kpCL). (4d)
Cy |w

Ces équations sont écrites pour un fluide 4 propri-
¢tés physiques constantes en I'absence de gradients de
pression longitudinaux. Equation (4d) exprime la
disparition de I'effluent a la paroi par l'intermédiaire
d’une réaction chimique d’ordre n (le probléme de la
création pariétale de cet effluent est symétrique du
présent probléme et est susceptible du méme
traitement).

C,(x) est la fonction inconnue que nous cherchons
ici. L'intégration de (3) sur y entre 0 et I'infini donne:

do** d
ot UG -Gl =St (9)
P L R e o
? *(")_L U, <1 ce—cw>dy ©
et
St(x) = _Jud 7N

pULC. = Cy)

est un nombre de Stanton.

La méthode de Rosner comporte trois étapes.

(1) La théorie du transfert a force (C, — C,)
constante est utilisée pour exprimer la relation entre le
nombre de Stanton St (x) et 6%*(x). Dans tout ce qui
suit, 'indice iso désigne des quantités et des résultats
relatifs au probléme a force (C, — C,,) constante.

Dans ce cas, St; (x) est donné par:

iso

Stiox) = O, R 12 57! (8a)

ou

0, = 0,332 5!, (8b)

C'est I'analogue du résultat de Polhausen [9].
D’aprés (8) la relation entre St;, et 6%* est donnée
par:
202 x
S2 R 6x*

iso

Stio(x) = ©)
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(2)Quand (C, — C,,) varie avec x, 6** et St sont bien
entendu différents de o%* et St Néanmoins, on
suppose que la relation (9) reste valable. Cette approxi-
mation quasi-stationnaire est bien plus logique que celle
de Frank-Kamenetskii en ce sens que I'on relie ici des
valeurs intégrales (dépendant de tout le comportement
de la couche limite) et non des valeurs locales.

Le nombre de Stanton est tiré de (5) et (9)

e X
Stle) = \/‘i{ ULC.~Cy)

x ! . (10)

l> rx U (C,~C,)? dx‘l
] ]

0

{(3) En exprimant que le flux massique pariétal J (x}
est le résultat d'une réaction d'ordre s, P'équation
intégrale suivante est trouvée

m = {1—m )2H

~1/2

z 1
(1—m,)* 'dé‘J an

0

Cette équation a été mise sous forme adimensionnelle
grice a l'usage des variables:

C
=T, 12
= (122)
et
k ' n— 1 2
5= .ie_°)_ LL x. (12b)
D U, 9,

Elle s’assortit de la condition aux limites

F=0; m, =1 (13)

Les équations (11) et (13) permettent le calcul des
concentrations pariétales pour tous les ordres de
réactions et conditions aérothermiques. En effet elles
utilisent la variable synthétique Z qui contient
I'information sur la dynamique et la cinétique
chimique,

Des solutions analytiques de (11) peuvent étre
données pour différentes valeurs de n:

pour n = 0 (flux constant)

Z=2(1-m,)?; (14a)
pourn =1
1 — 2
F=Inm + mzmw; (14b)
our n = !
pourn =3
1- 1
F= —3l-m)+ —™ +ln—; (14o)
mW mw
pour une valeur quelconque de n:
o on=2[1—m¥? J
Z = —
n—1{ m¥-? 2n -1
1 — mZn—l 1 — mZn
= *-. {14d
(g )+ e a4
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Quelques courbes représentatives de m,(z) sont
données sur la Fig. 1.

Cette méthode a déja été étendue par I'un des
auteurs de cet article au cas d’un échelon de cataiyse
[10]. Eckert [11] a montré (pour un échelon de
température pariétale x,-C, résultat est ici
transposé au cas de la diffusion de matiére) que le
nombre de Stanton peut se mettre sous la forme:

(15)

X

SR
Stiso(x) = ®1 R;I/Z S:1g< 0>'

L’application de la méthode en 3 étapes
précédemment décrite conduit a [10]:

(1 =m,)* M(Z, Zo)

mi, = s L (16)
{2 ( M(z, s)i{1 —m2) ds‘%
( Jg J
La fonction auxiliaire M(z, z,) est donnée par
6
gl— . i -
I z : Z,\ &
Mz, z,) = — === 17a
( 0) \/Z j;o g (E> \/é ( )
ou
Zo = Z(xg) (176)
Cette  équation (16) peut étre  résolue
numériquement.

Cette méthode de résolution est 4 ce niveau limitée
dans son application par 'hypothése trés restrictive
d'un écoulement a propriétés physiques constantes.
Dans un premier temps, nous allons donc devoir
étendre cette méthode au cas d'un écoulement
compressible non isotherme au-dessus d'une plaque
plane.

3. ECOULEMENT POTENTIEL UNIFORME. FLUIDE
COMPRESSIBLE NON 1ISOTHERME

Nous allons ici calculer les concentrations pariétales
d’un efffuent transporté par un écoulement potentiel

08,

M NN —
N
o4 \\ \ \wh&""‘"‘

L

. 3 -
8 10 2Z

]
N
»
[+

FiG. 1. Solution des équations (11) et (38).
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paralléle uniforme au-dessus d’une plaque catalytique
moyennant les hypothéses suivantes:

—La vitesse d’écoulement potentiel est constante
{pas de gradient de pression).

—La température peut varier dans la couche limite,
mais est constante dans I'écoulement potentiel. Ainsi,
p. et 4, sont des constantes.

—Le rapport pit/p.u, reste constant et égala 1 dans
la couche limite. Cette hypothése est valable dans de
nombreux cas pratiques.

—Les réactions chimiques ne sont pas
stuffisamment exo {ou endo)-thermiques pour affecter
les profils de température. Le probléme thermique est
dailleurs supposé résolu ici : on se donne T'(x, y), donc
plx, y) et p(x, y).

Le transfert thermique détermine les propriétés du
fluide, mais il n'y a pas de contre-réaction de la part de
la chimie sur les profils. Cette solution du probléme
thermique peut provenir d’une résolution antérieure
ou de mesures expérimentales.

Les équations (1) a (3) deviennent:

dpu  Opv
— —— = 0, 18
8x oy (18)
Ju v ¢ Su
— v —=—(u=—) 19
p(“ax”ay) ay(”ay> (19
oC ac & ac
— e p— = — | pD— 20
p(uax+Lﬁy> 5}’('9 @y> 0
avec les conditions aux limites
y—=ox u=U, 9Hfz(), (21a)
dx
Cc=C, dc. =0, (21b)
dx
y=0 u=pv=0, (21¢c)
aC
Jux) = PDE = k(pC,)" (21d)
Introduisons une transformation de Lees-

Dorodnitsyn, comme le font Fox et Steiger [15]:

6 = j He Pe Ue dx7 (223)
L]
pU. [ p
n= —dy (22b)
\/26 J‘O Pe
ainsi que la fonction de courant réduite, f :
oy oy
= — = — 23
pu 3 pv pg (23a)
[ (23b)

V&
En 'absence de gradient de pression, une hypothése
de similarité locale peut étre faite. Le systéme

{18)-(20) devient alors:
?f oY
»-—anz +f —~a’72 = 0, (24)
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1 *m om
-2 D 2
s a0 (25)
assorti des conditions aux limites
d
no o, Lo, (26a)
m-—1; (26b)
ap
n=0 ~§-j:=0,f=0; (26¢)
]
;. [26C" " (kp, Y Sc
om +fm = \L_é___ifi_)_( : (26d)
on pcp U,

m est une concentration réduite définie comme C/C..
Si nous remplagons la condition (26d) par:

=0 m=m,, = Ct.,. {26e)

la solution du systéme est bien connue. Elle a été
donnée par Polhausen. Ces solutions seront désignées

paf j;so(??) et m\so(q)
L’intégration de (20) sur y entre 0 et I'infini donne:

4 o Lo UAC—C ] = St @27)
dx dx pe el\Me w - -
avec
x® pu
o* = f (I1—-y)dy. (28)
] f'}eUe
ou
c-C
7= — 29
'S —c. (29)

Equation (27) est formellement identique a (5). Les
effets de la température sont introduits par I'intermé-
diaire de la définition de 6*; St(x) est toujours défini
par (7).

8% peut étre exprimé sous la forme:

= | o (L) anay o0
O Pe 6'?
ou
m— iso
‘}’iso = —’n“’__' (31)
1 - My iso
Les hypothéses et la définition de ¢ et # conduisent
a:
&= pepi. Uex. (32a)
2
Py = \/ (—“—5‘) dn. (32b)
pe pU.
On trouve alors:
s, = 20, \/ zvf Jx. (33a)
ou
1 [=of
=—" 221 - y,,.)dn. 33b
®2 \/2 J‘O 5'] ( ’}lsﬂ) '1 ( )
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©®,, conformément 4 la théorie de Polhausen, est
identique 4 ® ,/Sc. La relation entre &%, et St,,, est alors
trouvée quand (C,— C,,) est constant. Dans ce cas, en
effet

* ‘
d—é‘s" = St,,,(x) (34)
dx
ce qui donne
203 x
. = . 35
StielX) = 7z (39)

X150

Quand (C,—C,) varie, Papproximation de quasi-
stationnarité conduit a conserver (35). St(x) est alors
donné par:

k(p,C.)
St = GAC—C)

2-0xUC, - C,)
X 12
ScRx{ f [p.U.(C., — Cw)]zds}
o

(36)

Equation (36) ne différe de (10) que par l'introduction
de p,,. Dans de nombreux cas, il est possible de négliger
P'écart de p,(x) par rapport a une valeur moyenne g,,.
C’est dans ce cas que nous nous placerons ici.

On peut alors définir une variable £ par:

N VXN S 1 G R O O &
Y A 42 Ze1x. (37
£ [ D (pc Ue ®1 * ( )

L’équation donnant m,(?) est alors:

(1 _mw)z

7 12
U (1—m,)? ds‘j]
o]

Cette equation est identique & (11). Ainsi les solu-
tions données par (14) et représentées Fig. (1) peuvent
étre transposées a m,{(Z), moyennant I'hypothése
Pw > p,. De la méme maniére, le probléme de I’éche-
lon de catalyse pourra étre résolu a I'aide de (16).

(38a)

m, =

4. APPLICATION A UN JET PARIETAL

L’analyse que suit a €té développée afin de résoudre
un probléme rencontré durant I'étude de Pinteraction
d’une flamme plate propane—oxygéne sous 25 torrs et
d’une plaque de quartz plane paraliéle 4 P'écoulement
des gaz de combustion. Ceci justifie la géométrie
adaptée ici. Toutefois les résultats de notre étude sont
généralisables a toutes sortes de jets pariétaux.

La Fig. 2 montre la géométrie du systéme. Le brileur
et la flamme plate peuvent étre considérés comme un
orifice délivrant un jet de gaz chauds laminaires. Son
diamétre est L. La plaque plane est placée 4 une
distance d du brileur (d est de 'ordre de L/10). La
distance d’un point de la plaque au bord d’attaque est
désignée par x. Ainsi, la distance au briileur de ce point
est {(x+d)

4.1. Définition de I'écoulement potentiel

Divers auteurs ont étudié le jet pariétal dans le cas
d’un orifice générateur trés mince au proche voisinage
de la paroi. Glauert [13] a résolu le probléme dyna-
mique pour des propriétes du fluide constantes. Riley
[17] a étendu ce calcul au cas compressible pour
Tutilisation d’une transformation de Lees. Le transfert
de chaleur a été étudié par Bloom et Steiger [16] et
Bansal et Tak [18]. La théorie de Glauert a été vérifiée
expérimentalement par Bakke [19].

La géométrie du présent écoulement est plus génér-
ale que celle traitée par ces différents autedts, mais
nous allons utiliser certains de leurs résultats.

La région étudiée ici ne dépasse pas une longueur
égale 4 3 ou 4 D. Un profil de vitesse typique tel que
représenté sur la Fig. 2 peut alors étre adopté. Trois
zones peuvent étre distinguées dans ce profil:

—une zone de mélange (c) sur le bord du jet;

—une zone (b) ou la vitesse est pratiquement
constante;

—une couche limite au voisinage de la plaque (a).

L’hypothése fondamentale qui sera faiteiciest que la
seule interaction entre les zones (e) et (a) est constituée
par la valeur de la vitesse dans la région (b), appelée
U (x).

Pour déterminer U,(x), nous allons écrire la conser-
vation de I'impulsion dans le jet. La majeure partie du
flux de quantité de mouvement est contenue dans un
tronc de cone dont le diamétre, en raison du dévelop-
pement linéaire de la zone de mélange, est proportion-
nel a x. Ce que Yon peut écrire:

4 sz =0 (38b)
dx
ou
L 2
S=n(—2~+xf>, (39)
K est ici une constante.
L’intégration de (38) conduit 4:
; U
U (%) = T+t (40a)
ol
2x
a= A (40b)

Si d n’est pas trop différent (ou inférieur} a L/10,
(40a) peut étre transformé en:

U, (41)

Uy

Jx
pour x différent de zéro.

Nous utiliserons cette approximation plus loin. Elle
a été vérifiée expérimentalement dans un cas partic-
ulier [12].

Le probléme du transfert d’une espéce contenue en
concentration constante C, dans la zone (b) va étre
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FiG. 2. Schéma du jet pariétal.

considéré maintenant. Nous ferons les hypothéses
suivantes:

—T . est constant dans la zone (b). p, et u, sont donc
constants.

—Le probléme thermique, comme au §3 est consid-
éré comme résolu. T(x, y), p{x, y) sont connus dans
la zone (a).

- Lenombre de Schmidt Sc est constant. Il est égal a
v./D.,.

—pH{p.ti, €5t constant et égal a 1.

4.2. Calcul des profils de vitesse

Les équations décrivant les transports dans la
couche limite sont toujours données par (18), (19) et
(20). Les conditions aux limites sont données par:

y= o, u=Ulx) (42a)
ou U (x) est calculé d’aprés (41)
y—-x, C=C, %—i—e:O; (42b)
y=0, wu“=rv=0; {42c)
Dy -é% = klps C\)" (42d)

Dans un premier temps, nous devons calculer les
profils de vitesse. A I'aide des variables définies par (22)
et (23), le systéme (18) et (19) peut étre transformé en:

L L0y
on U, d& \@
o of o ¥
) (43
25(@17 oz "ot o) @)
avec les conditions aux limites
of
= - = = {; 43
'?0’611 6, f=0; {43a)

U (x) suit 41), —£dU,/U,d¢ prend la valeur 2.
Alors une solution semblable peut étre trouvée pour f,
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qui devient fonction unique de #. Equation (43)

devient:
f 2J’" N :
f T2 6— =0, (44)
7
Glauert [13] a donné une solution de (44) sous une
forme paramétrique:

fo=p (45a)
+p+p7 L J3p
—n[ 1-«/) }+\/3tan (m)
(45b)
qui conduit 4.

e 2

af pl1—p*). {45¢c)
Ui

Glauert remarque également que si A est une
constante, toutes les solutions de la forme Af® (An)
sont solutions de (43); f° est représenté sur la Fig. 3.

Du point de vue satisfaction des conditions aux
limites, f© satisfait au probléme défini par:

d
n=0, —f=0, f=0; (43a)
an
F;
71— 20, —f—+0, {43¢c)
on

La fonction f° entiére ne peut constituer une
solution 4 notre probléme. Une bonne approximation
au profil de vitesses sera donnée par:

Pour la zone (b): df /on{n) = 1;

Pour la zone (a): la part ascendante de la fonction
fn) = Af°(An) telle que df /dn = 1 & son maximum.

L’aspect asymptotique du raccordement de la
couche limite a la frontiére est supprimé. Toutefois
cette solution a donné un bon accord avec les données
expérimentales [14].

La similarité locale ayant été établie, nous pouvons
mettre I'équation (20) sous la forme:

1oy
S, on?

+f o _ (46a)
. on

ou y est définie par (29). f a été déterminée au § 4.2,
Les conditions aux limites peuvent s’écrire:

y— 1
,;:0,

(46b)
(46¢)

La résolution de (46a) est alors formellement
identique a celle du probléme de Polhausen avec une
fonction f(n) différente.

Le gradient pariétal de y sera donné par:

dy 1
anl = , @47

& (] Se
¥ f (exp —~ f b (s)ds) dn
0 o

n— K,

=0
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Le nombre de Stanton pour une concentration
pariétale C,,,,, constante, St, ., pourra s'écrire:
oc
p wD WA
% |w
pULC.—-C,)

IR AS 1/2x_”46_y
2:Sc\U, on

Dans (48), Pinvariabilité de Sc et up conduit a
Iégalité de D, et de (p,/p.)* D,
Sti.o(x) peut étre réécrit sous la forme:

Stiso(x) =

(48)

w

v 1/2
Sto = O3R; 1% = 0O, (—') x4 (49)
Uo
Le calcul de (9y/dn)|,, a été fait 4 partir de (47). Nous
avons trouvé a partir du résultat de ce calcul que 6, est
donné avec une trés bonne approximation par:

0, =0,3355¢793¢, (50)

4.8. Application de la méthode quasi-stationnaire
Equation (20) étant encore valable, une épaisseur
d(x) peut étre définie de la méme maniére que §*(x)
dans (28) et la relation entre 5(x) et St(x) sera donnée
par:
dé

d
d’; + éaln [peUc(Ce_Cw)] = S[(X), (51)

qui est identique a (27).

4.3.1. Quand (C,— C,,) est constant, mais que U (x)
varie, la relation entre St, et ;. se déduira de

d5iso 6iso dUe

dx U, dx
En tenant compte de (41) et (49), J,,, prend la forme:

v 1/2
S0 = 409, <U° ) X34,
0

(52)

= St (x).

(53)

2 ——
an .
\
|
075 ;
|
|
05 ,
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FiG. 3. Profils de vitesse dans la couche limite du jet pariétal.

Donc

Stiso(x) (54)

_4Pe32 (v VP
Okt Uo)

432, La relation (54) est conservée, suivant
I'approximation quasi-stationnaire. En combinant
(54) et (51), l'intégration, moyennant la condition x

=0, d = 0, nous donne:

44/3 v 2/3 fx 3/4
b o) | puc-carsl
_ 0 0
o = pULC.—Co) -

Exprimons maintenant le fait que le nombre de
Stanton, reli¢ a §(x) par (54), est également le résultat
d’une réaction pariétale d’ordre n:

k(puC.)

Pe Ue(Ce - Cw)

St(x) =

v 1/2
31/4 '93 (Ue ) {peUe(Ce_Cw)}1/3
= = ° m— (56)
{ [ [peUe(Ce - Cw):'4/3 dS}

JO

Equation (56) peut étre transformée en une équation
intégrale adimensionnelle par lintermédiaire des
variables m et z

(57a)

— 1 k(pece)n_l p-w " ve 12 4/9 2/9
z= {@386 ——De I Ue- x*”. (57b)

Cette forme de z peut étre comparée a (12b) et (37).
Equation (56) devient alors:

(1 - 'nw)A/3

z 74
z? I:f (1—m,)*?3 ds]
0

m—Cw
A

m, =

(58)

FiG. 4. Solutions de I'équation (58).
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Cette équation a été résolue numeriquement pour les
ordres 0, §, 1, 2, 3 et 4. Les résultats sont donnés dans
le Tableau 1.

Remarquons que pour n = 0 (flux constant), une
solution analytique est facilement trouvée sous la

forme:
1 1/4
=11~ 914,
m,fz) <4> z

Equation (59) conduit a4 une variation de 1-m,
proportionnelle a /x.

59

S. CONCLUSION

La méthode de Rosner, telle qu'elle a été développée
par son auteur, permet le calcul des fractions
massiques pariétales d'un effluent diffusant dans la
couche limite développée par un fluide vecteur de
propriétés physiques constantes. L'écoulement
potentiel n’a alors pas de gradient de pression.

Par l'introduction des variables ¢ et , nous avons
prolongé cette méthode au cas compressible non-
isotherme. Dans le cas d'un écoulement potentiel a
gradient longitudinal de vitesse (jet pariétal), nous
avons montré que cette méthode est encore applicable.

La formulation adimensionnelle du probléme est un
atout important de cette méthode, car elle donne des
solutions universelles, valables pour toutes les
cinétiques, vitesses, champs de température et nature
des fluides.

Les résultats de cette étude ont en particulier permis
de répondre & des questions posées lors de I'étude de
I'interaction entre une flamme propane-oxygene sous
25 torrs et une plaque de quartz.

On peut aisément se rendre compte que la méthode
proposée ici n'est pas limitée aux écoulements
potentiels isothermes suivant uniquement des lois de
vitesse telle que (41). En fait, 4 partir du momentou U,
P Ho peuvent étre exprimées en fonction d’une
puissance de x, une équation intégrale du méme type
que (58) peut étre trouvée, moyennant une définition

A. Garo et M. Leboux

convenable de z. Il semble toutefois que la similarité
locale soit nécessaire,

Par ailleurs, la solution de certains problémes
catalytiques peut étre transposée au transfert de
chaleur. En particulier, le cas du chauffage a flux
constant n = 0: dans ce dernier cas, les solutions
trouvées sont immédiatement applicables.

Enfin, des indications sont données sur 'application
du calcul présenté ici au cas d’un échelon catalytique.
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BOUNDARY LAYER WITH SURFACE REACTION : EXTENSION OF THE ROSNER'S
METHOD TO THE COMPRESSIBLE NONISOTHERMAL CASE. APPLICATION TO THE
WALL JET

Abstract—Rosner derived a quasi-stationary method for calculation of wall mass fraction of an effluent

diffusing in the boundary layer developed above a flat plane under isothermal incompressible conditions.

This method has been extended here to the non-isothermal compressible case with uniform potential flow,

Solutions are also given in the case of a non-isothermal wall jet. In this latter case a new integral equation is

derived under non-dimensional form and solved. In these three cases, non-dimensional curves are given for
several orders of reaction.

GRENZSCHICHT MIT OBERFLACHENREAKTION: AUSDEHNUNG DES ROSNER-
VERFAHRENS AUF DEN KOMPRESSIBLEN NICHTISOTHERMEN FALL. ANWENDUNG
AUF EINEN WANDSTRAHL

Zusammenfassung—Rosner entwickelte eine quasistationiire Methode zur Berechnung des Wandmassenan-

teils eines ausstromenden Mediums, das in die Grenzschicht iiber einer ebenen Fliche unter isothermen

inkompressiblen Bedingungen diffundiert. Hier wird diese Methode auf den nichtisothermen kompressiblen

Fall bei gleichftrmiger Potentialstrémung erweitert, Fiir einen pichtisothermen Wandsirahl werden

Losungen angegeben. Fiir diesen letzteren Fall wird eine neue Integralgleichung in dimensionsloser Form

entwickelt und geldst. In diesen drei Fiillen werden fiir mehrere Grade der Reaktion dimensionslose Kurven
angegeben.

OFPAHHUHRIR CION ITPY HANMYHHK TIOBEPXHOCTHOA PEAKIIMH:
OBOBHIEHHME METOJA PO3SHEPA HA COKMMAEMbBIFI HEM3OTEPMUUYECKUHA
CJIYYAN. CTPYAHOE OBTEKAHME CTEHKMH

AunoTamust — [L19 pacuera nPHCTEHOYHONR KOHIEHTPALMH BAYBaeMOH KHAKOCTH, Kotopas muddynan-
pyer B norpanwyHbii cnoi, obpazyromxiics Ha ANOCKOH NAACTHHE B HIOTEPMHMECKHX HECKHMASMBIX
ycrosuax, PosnepoM 8bin npefUToXeR KBazHCTAUMHOHapHHI MeToa B nacrosued pabore aror merox
obobuleH Ha (ydail ORROPOANOTD NOTEHUHARBHOTO TEYCHHAT H30TEPMHEYECKOH OkMaeMOll KHIKOCTH.,
[IpescTannenst TAkXKe DOUICHMR IS COydMas HEHIOTEPMMHYECKOro CTpyHHoOro obTekaHds CreHkH, a
TAKKe BHBEJCHO HOBOE HHTErDANBHOC ypasrenHe B O¢3paiMepHOM BHIE M JaHo erc pemenme. Hua
BCEX TPex CNY4acs npeacTasneHsl fe3pa3sMepHLe KPHBBIC JUls peakimil pas/iHuHbIX TOPSAKOB,



